The Crystal Structure of Tutton's Salts. VI. Vanadium(II), Iron(II) and Cobalt(II) Ammonium Sulfate Hexahydrates

BY H. MONTGOMERY,

Canadian Services College, Royal Roads, Victoria, B.C., Canada

AND R.V. CHASTAIN*, J. J. NATT, A. M. WITKOWSKA[†] AND E.C. LINGAFELTER Department of Chemistry, University of Washington, Seattle, Washington, U.S.A.

(Received 21 November 1966)

The crystal structures of the isomorphous vanadium(II), iron(II), and cobalt(II) ammonium sulfate hexahydrates, $V(NH_4)_2(SO_4)_2.6H_2O$, $Fe(NH_4)_2(SO_4)_2.6H_2O$, and $Co(NH_4)_2(SO_4)_2.6H_2O$, have been determined by three-dimensional X-ray analysis. The crystals are monoclinic, space group $P2_1/a$, with 2 molecules per cell. Cell dimensions are:

V: a=9.42, b=12.76, c=6.22 Å; $\beta=107.2^{\circ}$ Fe: a=9.32, b=12.65, c=6.24 Å; $\beta=106.8^{\circ}$ Co: a=9.25, b=12.52, c=6.24 Å; $\beta=107.1^{\circ}$

The water molecules are arranged about the metal ions in almost regular octahedra, the average metaloxygen distances being:

V-O, 2·15 Å; Fe-O, 2·13 Å; Co-O, 2·09 Å.

Introduction

As a part of a comparative study of the isomorphous series of ammonium Tutton's salts,

$M(NH_4)_2(SO_4)_2.6H_2O$

(cf. Montgomery, Chastain & Lingafelter, 1966), we have determined the crystal structures of the vanadium(II), iron(II) and cobalt(II) compounds.

Experimental

The vanadium(II) ammonium sulfate was prepared by a modification of the method of Kranz (1963). V_2O_5 was reduced to VOSO₄ with SO₂ in sulfuric acid solution. (NH₄)₂SO₄ was added, and the solution was cooled and reduced electrolytically with a mercury cathode. The reduced solution was concentrated in a vacuum desiccator over alkaline pyrogallol solution, forming flat, diamond-shaped amethyst-colored crystals. These were recrystallized under nitrogen from dilute aqueous sulfuric acid. The dried crystals are moderately stable in air (up to several weeks).

A crystal was cut into a rod to reduce absorption effects ($\mu = 94.6 \text{ cm}^{-1}$). The axis of the rod was found to be the [201] direction of the monoclinic cell. All data were collected from rotation and equi-inclination Weissenberg photographs taken about this axis with copper radiation. Intensities were recorded by multiplefilm techniques for levels 0 through 7 about the [201] axis on a Nonius equi-inclination integrating Weissenberg camera, integrating in one direction only, and were measured with photometer and planimeter. In all, 833 reflections were surveyed, of which 189 were below the minimum observable intensity and 19 were given zero weight in refinements because of secondary extinction effects. The intensities of the remainder varied from 1 to 1800.

Crystals of iron(II) ammonium sulfate hexahydrate were grown by cooling an aqueous solution, and a nearly equi-dimensional crystal (thickness $\sim 0.2 \text{ mm}$) was selected for collection of data. The cell dimensions were determined from rotation and zero-level hk0 Weissenberg photographs calibrated with sodium chloride $(a_0 = 5.6387 \text{ Å})$ and taken with copper radiation ($\lambda = 1.5418$ Å); the angle β was measured on a precession photograph of the a^*c^* net. Intensities were recorded with iron radiation by multiple-film techniques for levels hk0 through hk3 on a Nonius equiinclination integrating Weissenberg camera, integrating in one direction only, and were measured with photometer and planimeter. In all, 539 reflections were surveyed, of which 45 were below the minimum observable intensity and 6 were given zero weight in refinements because of secondary extinction effects. The intensities of the remainder varied from 1 to 5000.

Crystals of cobalt(II) ammonium sulfate hexahydrate were grown by cooling an aqueous solution, and a crystal with dimensions $0.24 \times 0.18 \times 0.16$ mm was selected for collection of data. All data were collected with zirconium-filtered Mo Ka radiation ($\lambda = 0.71069$ Å) on a Picker X-ray diffractometer equipped with a General Electric goniostat, a scintillation counter and a pulse-height discriminator. The cell dimensions were

^{*} Present address: Department of Chemistry, University of West Virginia, Morgantown, West Virginia, U.S.A.

[†] Present address: Ecole Nationale Polytechnique, Avenue Pasteur EL-Harach, Dépt. de Génie de Chimie, Alger, Algeria.

calculated by least squares from sixteen measured 2θ values. The intensity data were collected by the ω -2 θ scan method (Furnas, 1957). A total of 1587 unique reflections were examined, out to $2\theta = 55^{\circ}$, of which 145 were considered unobserved, giving intensities less than twice their standard deviations; 34 reflections were given zero weight in refinement because of secondary extinction effects. The intensities of the 1442 observed reflections ranged from 1 to 9000.

The intensities for all three compounds were corrected for Lorentz and polarization factors but not for absorption. The resulting structure factors for the vanadium and iron compounds were then scaled by levels to correspond to the calculated values, using the parameters of the isomorphous zinc salt (Montgomery & Lingafelter, 1964a). (It should be noted that this

scaling procedure, together with the lack of absorption correction, precludes physical interpretation of the anisotropic thermal parameters.)

The cell dimensions for the three compounds are: Vanadium(II) ammonium sulfate hexahydrate: a =9.42(3), b = 12.76(3), c = 6.22(2) Å; $\beta = 107.2(2)^{\circ}$. Iron-(II) ammonium sulfate hexahydrate: a=9.32(2), b=12.65(2), c = 6.24(1) Å; $\beta = 106.8(1)^{\circ}$. Cobalt(II) ammonium sulfate hexahydrate: a=9.254(2), b=12.521(4), $c = 6.244(1) \text{ Å}; \beta = 107.06(4)^{\circ}$. Systematic absences: h0l when h is odd; 0k0 when k is odd; space group $P2_1/a; Z=2.$

Refinement

For all three compounds, the initial atomic parameters for the heavy atoms were taken from the zinc salt and

	Fractional p	ositional para	ameters $\times 10^4$	Anisotropic thermal parameters $\times 10^4$							
	$\overline{x/a}$	y/b	z/c Vanadium	β_{11}	β_{22} ium sulfate	β_{33} e hexahvdrate	β ₃₃	β ₁₂	β ₂₃		
v	0	0	0	17 (2)	20 (1)	222 (14)	2 (1)	40 (6)	2 (2)		
¢ C	4077 (3)	1370 (2)	7406 (6)	$\frac{1}{6}$ (3)	$\frac{20(1)}{10(1)}$	168(14)	-2(1)	25 (7)	2(3)		
$\frac{3}{0}$	4077 (3)	1370(2)	5801 (15)	108(14)	19(1)	100(13)	-5(1)	$\frac{23}{61}$	-2(3)		
O(3)	4104 (9) 5470 (9)	2273 (3)	7977 (13)	108(14)	21(4)	293 (44)	-10(3)	$\frac{01}{23}$	17(9)		
	3470 (8)	709 (0) 669 (5)	(224(17))	7 (10)	33(3)	301 (31)	10 (3)	-24(21)	-17(12)		
O(3)	2798 (7)	008 (5)	0234(14)	40 (10)	28 (4)	228 (40)	-15(5)	44 (19)	-14(8)		
	3842 (8)	1/05 (5)	9483 (14)	63 (11)	34 (4)	186 (41)	-14(5)	25 (21)	-3(9)		
O(7)	1/49 (8)	10/1 (5)	1/02 (15)	46 (11)	34 (3)	285 (42)	-26(5)	61 (20)	-20(10)		
O(8)	-1632(7)	1135 (4)	321 (15)	12 (9)	21 (3)	324 (45)	6 (4)	16 (18)	9 (9)		
U(9)	-12(8)	- /11 (5)	30/2 (16)	49 (11)	28 (4)	297 (42)	12 (5)	64 (20)	21 (9)		
N	1339 (9)	3483 (6)	3589 (19)	28 (13)	39 (5)	247 (54)	1 (6)	16 (25)	1 (12)		
-	•		Iron(II) ammoniun	n sulfate h	exahydrate					
Fe	0	0	0	36 (2)	25 (1)	184 (14)	-2(1)	-1(4)	3 (2)		
S	4068 (2)	1372 (1)	7417 (4)	26 (2)	25 (1)	165 (17)	-5(1)	4 (4)	0 (3)		
O(3)	4083 (5)	2275 (4)	5896 (10)	132 (8)	39 (3)	290 (33)	- 23 (4)	81 (11)	5 (7)		
O(4)	5462 (5)	783 (4)	7853 (10)	40 (6)	60 (3)	394 (35)	4 (4)	20 (11)	- 20 (8)		
O(5)	2799 (4)	673 (3)	6284 (9)	54 (6)	41 (3)	221 (33)	-7(3)	-1 (10)	-6 (6)		
O(6)	3848 (5)	1769 (4)	9532 (11)	88 (7)	48 (3)	165 (36)	-4 (4)	56 (11)	-2 (9)		
O(7)	1742 (5)	1079 (3)	1722 (10)	7 8 (7)	44 (3)	237 (31)	- 19 (3)	49 (10)	4 (7)		
O(8)	- 1637 (4)	1129 (3)	289 (10)	42 (6)	35 (3)	307 (30)	3 (3)	26 (10)	2 (6)		
O(9)	-1(4)	-702 (3)	3027 (10)	63 (7)	36 (3)	260 (33)	8 (3)	55 (10)	17 (6)		
N	1331 (6)	3500 (4)	3609 (13)	90 (9)	44 (4)	306 (43)	4 (4)	40 (14)	21 (8)		
			Cobalt(II) ammoniu	m sulfate	hexahydrate					
Co	0	0	0	46 (1)	27 (1)	120 (2)	-2(1)	18(1)	1(1)		
S	4077 (1)	1369 (1)	7401 (2)	59 (1)	35 (1)	157 (3)	-6 (1)	24 (l)	-6(1)		
O(3)	4119 (4)	2272 (3)	5911 (6)	144 (6)	48 (2)	220 (10)	-21(3)	56 (6)	-7(4)		
O(4)	5473 (4)	769 (4)	7866 (7)	75 (4)	76 (3)	367 (14)	10 (3)	27 (6)	-13(5)		
O(5)	2810 (4)	665 (3)	6241 (6)	80 (4)	51 (2)	222 (10)	-9(2)	34 (5)	-17(4)		
O(6)	3843 (4)	1763 (3)	9489 (6)	127 (5)	50 (2)	207 (10)	-7(3)	59 (6)	-8(4)		
O(7)	1712 (4)	1080 (3)	1652 (6)	86 (4)	53 (2)	187 (9)	-13(3)	34(5)	-6(4)		
O(8)	-1622(4)	1114 (3)	345 (6)	79 (4)	41(2)	266 (11)	6(2)	41 (5)	6 (4)		
oò́́	-12(4)	-689(3)	3009 (5)	97 (4)	44(2)	197 (9)	5(2)	52 (5)	6 (4)		
Ň	1335 (5)	3479 (4)	3575 (8)	97 (6)	52 (3)	222(13)	-3(3)	53(7)	0(5)		
	p	arameters v	103	Isotro	nic narom	eter D	0 (0)	00 (1)	0(0)		
11(11)	(1 (0)		200 (15)	150110		elei, b					
H(11)	61 (9)	323 (6)	208 (15)		7 (2)						
H(12)	218 (9)	288 (6)	417 (12)		6 (2)						
H(13)	69 (9)	341 (6)	446 (13)		6 (2)						
H(14)	168 (9)	415 (7)	362 (12)		6 (2)						
H(15)	204 (7)	81 (6)	319 (12)		5 (2)						
H(16)	241 (6)	119 (4)	64 (9)		3 (1)						
H(17)	- 256 (10)	87 (7)	- 54 (14)		7 (2)						
H(18)	- 148 (6)	188 (5)	4 (9)		3 (1)						
H(19)	-144 (14)	-47 (11)	306 (21)		14 (3)						
H(20)	28 (5)	-144 (4)	341 (8)		2 (1)						

Table 1. Final parameters (with least-squares standard errors in parentheses)

<pre>http://www.construction.com/commencesseruh. 'Jaumi' caroo sunce as weekee Processeruh. Processeruh.' Proce</pre>			

Table 2. Observed and calculated structure factors for vanadium(II) ammonium sulfate hexahydrate Columns are k, $10F_o$ and $10F_c$. Unobserved reflections are marked with *, and those omitted because of secondary extinction are marked with E.

Table 3. Observed and calculated structure factors for iron(II) ammonium sulfate hexahydrate Columns are k, $10F_0$ and $10F_0$. Unobserved reflections are marked with *, and those omitted because of secondary extinction are marked with E.

r		. 0	,	7.1.8	8.74	r	S		12	216 23	., T	11	114 -115	1,	258	260		1.5.2			3.8.2	,	144 -127	,	74 /1		172 -124			
1			1.5	193	-190						·	•••		15	27.	-25			1			5	301 293	÷.	111 116	;	105 87	10	243	241
1	2 495	417	ιŝ.	5.65	584	1	477	563		-2.K.l			-4.K.l	4	268	264	1	110	129	1	185 227		152 -143			-	350 534			201
	6 806	-814	Ś	113	- 31.2	ž	44 C	406						5	231	223	2	15+	-14	2	229 240	ŝ	168 359		0.8.3	ŝ	26 -11		6.8.	a
	6 38	- 10	í.	1.76	-167	i	44.1	451	0	838F 115	90 L	0	29 -15	6	27.	-8	3	168	189	3	331 343	á	63 58			ź	121 110		3144	'
1	8 301	307	i,	65		14	62	-49	l ī	281 26	58 1	ĩ	114 121	11	225	225	4	19+	-21	4	248 -255	,	97 74	1	109 -119	,	123 120		200	145
h	0 20	• 20		156	+164	5	260	256	ż	182 1	15	2	113 -115	8	192	203	5	167	116	,	246 267	в	217 188	;	201 247	Å	70 +52	;	417	-
li	2 106	103	9	217	246	6	436	430	3	311 26	91 I	3	251 269	9	252	-271	6	216	-241	6	460 -477	-		5	387 -4/9	4	54 49	- 1	176	185
1			10	2 10	242	7	250	20	•	52 -	51	4	396 347				1	540	584	7	102 89		-5.K.2		110 113	10	205 212	÷.	146	-134
	1.8	.0	lii -	63	59	8	298	288	5	387 37	75	5	256 271		7.8.	1	8	44	+4C	8	191 192				295 307	11	23 14	ŝ	175	168
1						2	59	49		571 50	05	6	504 511	1			9	234	231	9	65 55	1	75 79	6	238 239			á	302	273
	1 7:	71		5.K.O)	10	145	160	1	311 = 30	04	7	100 -89	1	123	-120	10	285	276	10	286 270	2	105 104	7	134 134		3, 8, 3	- 7	50	46
1	2 500	-404	1			11	196	-196	6	341 34	41	8	521 530	2	368	362						3	431 403	8	79 74					
1	3 1048	1051	1	656	715	12	106	110	9	27.0	15	9	114 -161	1.3	378	351		-1.K.	2		-3.x,2	•	144 133	۷	207 -201	1	299 298		- 5, 6	.3
	ه ا	- 34	2	1.01	-45				10	12 -0	68	10	54 -56	1 *	58	46	Ι.					5	437 435	11	11+ -1	2	39 -31			
	5 76	63	3	243	-299		1.8.1		11	41 -	34	11	25 -24	1 3	261	250	1	589	948	1	122 119	6	25+ -15			3	227 248	1	308	306
1	6 9	-78		74	66				12	61 (63			6		-81	1 2	144	- 126	2		1	157 -155		1,8,1	•	85 83	2	194	•
	1 44	41	1	102	36	11	48 9t	115			- 1		5.X.I	17	118	110	1				224 207	8	240 -13			5	290 598	3	61	-69
1	8 21	• 16	6	112	104	12	344	- 264	1	3,8,1	- 1		100 110		- 7 -		12	210	-167		472 435	. 4	135 123	1	373 431	6	63 65	•	21.	-1
Ι.	9 230	254	1	1*6	417				I .		!	;	314 326		-/,1		12	447	-111	12	109 102	10	100 -100	2	238 263	,	147 -141	5	202	202
15	0 4	-23		51	-52		300	400			20 [<u>ج</u>	314 321	1.	4.70				104	٩,	220 198			3	150 348	9	58 -49		150	142
	1 314	357		223	231	12	292	103	15	107 1		2	143 -151			212	1			l á	100 -154		6.K.Z	- 2	19• 2	9	63 58	. !	359	348
1ª	2 10		10	-74	-102	1 %	202	101	1.1	141 1	. 1	2	164 132	1.	109	-102	i i	255	249	l ä	247 254		401 434	2	121 133				1/4	-1421
					,	1.1	182	-143	1.2	452 5		í.	AA -53	1 4	111	152	10	56	- 52	10	119 -116		101 120				-,,,,,		112	
1	~ ~ ~	•••			,	(ï.	244	26.2		- A1	. I I	,	227 213	1.5	41	-47	111	101	- 56	l ii	97 99	. ;	214 221		01			10		- 24
			0	111	10.9	110	129	-129		586 6	19	é.	143 143	16	29	-18						1	21. 12	ŝ	125 115	;	115 100			.
1	1 4 2		l i	176	-141	Lii .	111	-123	l Á	185 -1	A	4	181 172	1 7	372	373		2.4.2			4.K.2	í.	AA = 40	10	205 194	- 1	110 100		0,	'
1	2 38	297	1 5	403	422	112	- 31	29	9	171 1	13	10	62 61	8	1.4	-20	1			1		5	20+ 2	•••	101 114	1	63 761	1	88	4.
1	3 15	-171	3	26.	- 19				10	153 1	41						0	148	169	0	209 203	6	211 190		+1.K.3	5	97 -94	;	102	
	4 42	385	4	193	204		-1,*,	1	11	62 -	61		-5.8.1		R,K.	1	1	153	184	1	212 -239						29 28	3	185	164
1	5 20	-190	5	82	54												2	85	/c	2	112 121		-6,K,2	1	194 211	7	354 335	4	244	224
	6 28	278	6	250	-6	1	200	190		-3,*,1		1	410 426	0	417	431	3	246	226	3	306 -311			2	31 21		78 -73			
	1 2	• -16	1	57	53	1 2	616	- 54 9				2	144 147	11	94	86	•	478	504	•	84 83	0	307 294	3	453 435	9	19. 19		-0.8	
1	8 17	2 168	8	51	48	3	511	504	1	261 -2	74	3	196 202	1 2	105	101		145	210		287 274	1	240 -18	٠	51 48	10	19 -25			· .
1	9 19	210	9	16-	3		237	-233	2	518 5	33	•	128 -119	13	85	89		20C	254	6	291 285	2	88 79	•	57 54	11	31 -24	0	299	286
11	ω 5	57				5	147	131	3	940 9	40 I	5	163 164	1 *	29	- 3	1 1			1 !	240 1	1.3	331 - 350 (6	93 -BA			ι	21.	+27
	1 2	l• 20		/	5	6	229	206	•	218 1	31	6	213 -218					228	220		402 424	•	123 -114	7	225 232		4, 4, 3	2	347	360
1	2 14	3 141				1	166	169	>	570 5	63	1	163 152		-8,	(+1		507	+307		132 -133	\$	25+ 25		205 203			3	50	-54
			1	4 98	518		100	179			<u>/:</u>		41 43				110			1.0	65 55	6	361 357	. ?	155 147	1.1	21.0 32	•	79	75
	3.	•••	1 ?	337	355		483	492	1 !	14/ -1	22		170 100	12		. "	1	-2.8	,			1 !	127 122	10	17.	2	318 312		307	-329
1				106	108	110	260	-/01			17	10	1/0 /04	11		201	1		•			•	440 223		>• >1		64 49	•	35	25
1	1 36	382	12	62	-50	115	1 2 3	113	1.0	141	10		6.8.1	1 °		101	1 0	420	-477	0	47 -17	1					92 90	11	18.	
1	1 12	· -148	12	37		114		,	111	116	17 I			1	0.*	.,	l ĭ	203	-220	l ĭ.	94 89	1	117.12		(1 1 1 1	12	212 -198			42
	2 29		1,	70		1	2.8.			, ao 🖣	••	0	536 556	1		· r	1 2	247	220	1 ż	336 340	۱.	194 14		103 134	1 3	129 134	* ۱	177	149
		3 321	14					•		6.8.1		í	428 -438	1 0	120	-120	1.5	216	213	15	20. 29	15	278 -269	;	279 274	14	145 141		- 1 -	
1		5 767	l °	."	.,	1 6	51 1F	-621	1		1	ż	154 126	11	197	-239	14	527	496	14	100 108	15	224 221	5	44	۰.	177 171	1	-/	• •
	7 19	2 190	1	A . K . I	0	l í	48.0E	633	l c	127 1	36	3	271 -269	12	12	 -21 	15	181	-170	1 5	295 -283	14	41 41		97 -10	1	** .* . 1	1	104	104
	8 14	A -129			-	15	56 7E	682	l ī	128 -1	42	÷.	270 -3	1	266	-265	6	471	440	6	452 433	5	194 217	5	47 -58	1		13	300	-122
	ă i,	-121	0	192	184	15	461	552	2	397 4	27	•	313 295	4	653	684	1	24+	-26	17	320 -333	1		6	283 292	0	134 134	11	100	101
1	10 24	8 -266	Ĩ	317	- 299	14	699E	813	1 3	303 3	02	6	158 144	1 5	351	- 34 7		144	140		325 308	1	-7.8.2	1	72 -62	1 1	64 53	14	20	
1	ii 7	0 01	l ž	124	115	1,	348	-377	1 4	403 4	03	7	76 67	6	347	360	9	220	216	9	297 270				406 402	12	366 364	5	243	240
	12 9	6 106	3	1 79	-177	6	94	103	5	217 2	84	8	329 300	1	245	239	10	320	321	110	20+ +15	1	25+ 41	9	27 -28	3	359 342	1 6	213	212
			4	184	182	1	33	-24		38 -	27				92	95	111	41	-46	111	202 198	12	142 -125	10	56 46	4	460 459	1	111	-11+
	۰.	K.O	5	107	114		168	-178	17	119 1	10		-6,K,L	1 9	25	• 27	115	132	134	1		3	268 259			1 5	219 -222			
t			6	251	226	9	27.	-4	0	91	79			110	347	337	1			I I	5,K,2	1 4	24+ -22		-2.K.3	6	163 -160	l I		• 3
1	C 13	4 -139				10	291	289	9	273 -2	56	0	217 229	11	19	 -25 	1			1.		1,	214 212			17	184 -185	1		
	1 23	6 264	1			111	21.0	-1	10	219 2	15	1	181 -171	112	103	174				11	41 =50	6	125 -130	0	284 319	1 8	20+ -21	10	462	435

777

Table 4. Observed and calculated structure factors for cobalt(II) ammonium sulfate hexahydrate

Columns are k, $10F_0$ and $10F_c$. Unobserved reflections are marked with *, and those omitted because of secondary extinction are marked with E.

G.K.O	1 3 20	110 24	141	2 33 -12	I 8. ⊮ ?		1 8.4.3	L L D C = C		1 4 261 31 41		1 - 2
2 415F 492 4 549F -685	4 13 6 5 15 1 6 168 15	4,K	.1	3 128 122 4 52 -51 5 127 115		1 103 104	0 136 121	2 184 173	12 153 145 13 46 43	5 55 54 6 65 67	ÿ 13 =35	1 83 87
6 26• 31 P 3C2 32C 1C 7C 63	8 137 13	1 26 2 22 3 270	-19 264	6 51 -42 7 182 180 8 78 69	2 131 127 3 150 150 4 104 108	3 116 111 4 52 44 5 156 154	2 146 14C 3 36 33 4 197 196	5 44 46 6 46 1C3 7 58 -48	-3,K,4	8 112 101 9 21. 10 196 190	1 155 161	3 218 210
12 129 124 14 258 252 16 170 148	11.K,C	4 115 5 185 6 21	109 186 15	9 H7 92 0 36 31	5 197 -183 6 174 172 7 74 -69	6 154 -150 7 280 266 8 37 19	6 21 - 26 7 6F - 57	8 24 89 -11,K,3	1 55 51 2 412 441 3 345 359	11 22• -5 3,×,5	3 21• -4 4 67 6C	6 54 -57 7 23• -0 8 23• 20
1.44.0	2 58 -4 3 205 18 4 21• -	7 2C• 9 9 89 9 49	-22	=10,K,1 0 19= 13	8 113 112 9 128 111	10 71 64	9.6.3	1 21. 123	5 2 75 279 6 139 =138	1 199 202	6 22• P 7 257 238 8 26 -18	9 23+ 36 =8,K,6
2 343E -41C 3 71ef 1104	0,K,1	10.8	•1	1 106 -102 2 132 123 3 119 -112	9,K,2 1 103 110	-10,×,2	2 48 48 3 36 34	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8 146 140 8 144 152 9 255 248	3 20 21 4 34 -30 5 168 157	-1C.K.5	C 106 96 1 115 -110
5 109 113	1 454E 551 2 394E 49		136	5 19 16 6 111 170		2 86 93	-1,K,3	C.K.4	12 127 -121	7 244 239 H F4 76	C 24• -C 1 82 74 2 8C 77	2 88 85 3 77 -68 4 96 93
8 15* -C 9 277 285 10 19 -27	5 235 24 6 416 44	4 74 5 134 6 150	-123	Ŕ 2Ć+ ĺć =11.K.1	6 68 65 7 178 165	5 24 17 6 21• 100 7 53 - 37	3 471 5C7	C 357 371 1 72 66 2 249 250	14 34 -74 -4.K.4	10 25 -13	5 9C -86	6 172 160 7 32 194
11 349 359 12 95 96 13 39 40	7 46 4 8 312 32 9 85 6	-1,K	•1	1 74 75	10.K.2 0 51 44	9 54 -49	5 11C 114 6 91 -93 7 269 2/3	3 1C4 1C7 4 27• -15 5 4C -89	C 293 300	0 H6 =/2 1 158 =153	-11,8,5	-9,K.6
15 47 50	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2 4 3 6 F	-548	3 124 118 6 85 -75 5 123 114	2 1 4 3 1 3 6	-11,×,2	8 199 210 9 196 196 10 19• 14	6 299 301 7 76 84 8 304 304	2 290 296 3 23 -33 4 171 165	2 152 -14H 3 132 -127 4 252 -243	1 162 148 2 72 -63	2 74 67 3 142 129 4 57 -47
2.8.0 C 5336 676	15 64 50 16 113 10	5 171	175	0,K,2	-1.K.2	3 28 26 26	12 155 -145 13 116 111	10 58 94 11 29 -31	6 112 112 7 108 -104	6 136 136 7 23 -23	C.K.6 C 25+ 35	6 120 -109
1 4530 565 2 304 328 3 138 -154	1.K+1	8 166	499	0 45 -40 1 231 -248	2 595E -729	6 39 34	15 180 163	13 223	9 115 -117 10 205 -205	9 74 -69 5-8-5	2 226 225	0 83 73
4 400 422 5 169 -188 6 302 341	1 588E 79 2 335E -40 3 14* -	11 228 12 103 13 8C	234	3 264 -274 4 620E 705 5 317 -323	5 89 -87 6 371 398 7 414 434	0 81 68	0 392 - 406	1 2 2 6 291	12 163 155	1 192 171	5 H2 74 c 13 68 7 51 45	3 171 128
7 20 -21 8 208 -213 9 181 -184	6 252 28	15 24	56 14 -43	6 358 371 7 244 249 8 140 143	8 44 -41 9 276 291 10 35 -39	C.K.3	2 149 146 3 508 -562 4 541 586	3 21P 222 4 327 329 5 2CB 2CB	-5,8,4	3 109 107 4 38 -27 5 186 173	8 31 33 9 77 -66 10 161 153	0,K,7
	9 288 29	-2,K		0 359 367	12 31 222	2 276 291	6 168 176 7 108 94	6 188 194 7 e1 73 8 241 -241	3 41 -40	6 101 -55 7 143 135	1.K.6	1 117 -110 2 105 99 3 91 -81
14 226 216 15 2C• -11 16 111 104	11 56 -6 12 19• 1 13 214 20	2 210	275 1	3 62 60 4 72 -62 5 21 1	15 203 191 -2.K.2	5 286 301	10 229 229	10 78 -71 11 220 209	é 131 -137 7 310 -137	0 188 177	2 35 4C 3 21• 1	5 68 69
3.K.O	14 25 2 15 156 15 16 48 -4	5 331	152 54 C	1,4,2	0 395E -478	9 184 - 199 10 55 - 53	12 257 252 13 61 56 14 41 43	13 78 75 2.K.4	9 159 150 10 20• 7 11 44 35	2 100 103 3 25 -30 4 22 19	5 66 68 6 103 -98 7 128 128	1.46.7
2 139 -135 3 32C 338	2.K.1	8 341	-28C 353 38	1 184 188 2 50 -64 3 223 226	2 239 267 3 217 236 4 497F 564	11 2C• -13 12 151 145 13 134 125	15 27+ 14 -3,K,3	C 4C6 413	12 40 28	5 76 69 =1,K,S	8 96 92 9 12C 116	1 82 78 2 23• 30 3 151 149
5 537E 588 6 143 151 7 236 240	1 517E 599	11 36	-114	5 213 219 6 16• -184 7 562 -596	7 175 -171 6 448 488 7 38 -35 8 194 194	15 129 -3	1 675E 75C	3 227 230	C 34 12	1 32 28	2.K.6 C.58 _58	5 123 113
8 113 -111 9 74 -81 10 738 -234	4 686E 84 5 314 -33 6 144 14	15 237	233	8 273 277 9 273 277 0 255 251	9 187 196 10 342 345 11 27 -21	1 455 478	5 44 -42	6 2C• 2 7 24 -25 8 211 208	2 288 290 3 157 163 4 422 440	4 142 149 5 226 229 6 175 179	2 182 172 3 113 -104 4 125 125	C 231 219
11 101 96 12 83 90 13 252 252	7 16• -10 8 103 -10 9 18• -1	-3,K	-203	1 81 77 2 56 -55 3 62 62	12 160 164 13 154 -147 14 40 -31	3 434 451 4 172 5 192 201	7 369 385 8 66 -71 9 63 65	9 16C 157 1C 143 141 11 21• -11	5 88 80 6 57 -55 7 20• -7	7 205 201 8 135 -139 9 84 78	5 71 74 6 75 79 7 36 28	2 94 89 3 52 37 4 31 28
15 171 160		5 3 777E	12191	5 170 160	-3,K,Z	7 124 -121 8 86 86		13 85 -99	\$ 37 -35 1C 2C2 203	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 1C1 101 3,K,6	-1,K,7
C 67 -74	15 24 4	7 66	-72	0 205 213		10 165 160	14 122. 102	1 250 249	12 152 148	-2+K+5	1 37 44	2 124 114
2 698F 801 3 185 -176 4 565E 619	3,K,1	10 130	-140	2 98 105 3 231 244 4 502 538	4 192 -195 5 443 478 6 90 103	13 134 136	0 191 199	3 ićž iči 4 75 71 5 149 147	1 224 215	1 H5 P7 2 22 4 3 150 157	4 79 -69 5 196 183 6 82 -76	5 40 48 6 88 -83 7 62 68
5 287 -293 6 85 -89 7 68 -70	2 151 16 3 48 -44 4 164 16	12 20	113	5 190 204 6 293 302 7 39 -40	7 244 254 8 140 -141 9 266 274	0 269 26	2 383 416 3 318 327 4 493 522	6 206 206 7 230 232 8 124 -126	3 19• -10 4 73 73 5 184 190	4 223 222 5 120 -121 6 336 338	7 84 7E 4,K,6	-2,K, 1
9 221 226 10 232 228	7 575 61	-4,K		9 278 -277 0 126 120	10 104 -106 11 126 128 12 201 191	2 327 332	6 9C -93 7 183 -183	10 69 -91	7 358 357 8 28 -23	8 216 217	6 224 214 1 35 -37	C 69 66 1 61 -56 2 134 142
12 215 212 13 71 -75 14 133 120	9 205 200 10 133 13 11 23 -10		1441 1441	2 152 145 3 177 170 4 109 110	14 105 92	5 54 -51 6 105 312	9 123 123 10 289 282	4.8.4	10 86 -78 11 46 37 12 22 -8	11 26 -27 12 50 -56	2 105 102 3 46 25 4 47 48 5 22 14	4 173 172 5 97 87
15 38 32 5,K,O	12 36 -21 13 150 149 14 24 -19	3 215 4 390 5 232	2371	5 83 -73 3.K.2	-4,K,2	8 413 419 9 25 -28 10 88 88	12 19C 183 13 71 -68 14 51 44	C 61 -55 1 19• 23 2 111 111	-8,K,4	-3.K,5 1 77 -88	5,K,6	7 26 13 8 23+ -1
1 637F 710 2 98 -91	15 156 154 4.K.1	7 72 N 503	532	1 243 253 268		11 125 118	-5,K,3	3 364 394 5 2C• -7	C 76 66 1 58 96 2 151 148	3 385 395 4 180 -180	1 23 26 	-3,K,7
4 45 69 5 147 142 6 99 90	0 156 -130		-27	4 222 -230 5 288 -294 6 424 -455	5 260 -271 6 431 450 7 300 -315	3.8.3	3 17 -13	0 2C+ -2 0 56 51 0 61 81	4 3C7 298 5 1C8 -111	6 23 19 7 SC 82 8 21 11	1 213 -125 2 121 -125	3 71 70 4 24 22
7 4CC 406 8 38 -37 9 243 239	3 285 30 4 415 43 5 239 23	13 38 14 214 15 21•	208	7 141 137 8 143 143 9 95 88	8 320 331 9 234 234 10 50 43	1 345 355 2 22 3 261 25	5 234 234 6 125 129 7 381 386	10 125 125	7 35 31 8 38 45 9 57 57	9 121 126 10 49 41 11 197 188	4 22• -1 5 86 88 6 45 -40	6 44 -42 7 152 147 8 22• -15
10 89 -87 11 19• 6 12 68 60	6 46 40 7 104 10 8 105 10	-5,K	,1	0 237 235 1 274 268 2 20• -13	11 185 180 12 60 67 13 69 -70	5 258 291 6 19 31	8 16C -165 9 129 129 10 51 -49	1 260 256	10 101 104	12 220 7	7 200 202 8 22• 10 9 171 158	-4.K.7
14 128 121	10 212 200 11 101 -9	3 257	-100	4 64 -61	15 28 -25	1 78 -71 8 46 -45 9 80 88 10 20 -19	12 106 104 13 94 98	3 1CH 111 4 29 30	1 158 153	U 476 436 1 202 -212 2 187 187	10 34 22 -2,K,6	C 18 29 1 22• 11 2 152 146
0 147 157	13 54 54	5 205	-207	0 272 287	1 125 117	11 253 24F 12 40 40 13 147 140	-6,K,3	6 57 51 7 196 193 8 34 30	3 229 215 4 50 50 5 83 86	3 53 40 4 47 -53 5 121 129	C 55 55 1 172 177 2 139 143	4 173 172 5 46 -40 6 102 100
2 422 437 3 29• -32 4 231 229	5,K,1	10 159	73	2 146 148 3 259 -275 4 121 109	3 4 30 4 56 4 1 34 1 37 5 4 40 4 59	4,K,3	0 345 351 1 4C -39 2 385 399	10 164 -90	6 126 118 7 39 47 8 62 -61	6 226 229 7 35 -28 8 255 257	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7 40 -31 H 39 -14
7 37 39	2 295 203 3 203 20 4 130 -130		-92	6 285 291 7 19• -17		2 342 352	4 152 152 5 289 - 296	C 5c 53	9 70 75 -10,K,4	9 86 -F7 10 68 66 11 22 19	6 161 155 7 72 -68 8 35 -20	-5,K,7
9 19 5 10 285 284 11 20 -10	6 39 4 7 228 22 8 106 11	-6.K	.1 1	9 98 -99 0 106 96 1 24 28	10 97 -96 11 297 297	4 117 111 5 179 -185 6 158 154	7 19• -12 8 124 121 9 170 168	2 123 122 3 75 -69 4 242 239	C 313 289 1 1C7 1C4 2 81 80	-5,K,5	10 85 97	3 59 65 4 38 35 5 52 51
12 166 167	9 195 19 10 52 5 11 162 15	0 272	27311	2 29 27 3 78 76 4 160 155	14 211	7 19• 16 8 175 175 9 156 155	10 103 105 11 55 50 12 97 99	5 123 113 6 83 83 7 38 -28	3 192 176 4 23 -18 5 32 -29	1 145 141 2 266 271 3 1PO 18C	1 18C 174 2 169 -194	6 134 117 7 H7 85
1 424 513	13 28 34 14 34 -19	5 208	-212	5+K+2	0 329 323		-7.K.3	P 21+ E		4 106 -108 5 168 167 6 91 -93	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-6,K,7 C 103 106
3 137 13e 4 42 -48 5 18• 1	6.K.1	1 202	-206	2 113 -118	2 142 131 3 298 -316 4 55 -59	5,8,3	1 154 151 2 283 -288 3 332 -336	1 158 150	1 41 32	8 69 77 9 243 231	7 1C2 104 P 63 -65	2 162 147
6 72 -74 7 105 106 8 51 54	1 384 -400 2 158 150 3 226 -23	10 255	253	5 348 351 6 46 39 7 132 124	5 18• -4 6 372 382 7 99 103	1 223 225 2 397 -407 3 207 -204	4 19• P 5 26P 27C 6 208 210	5 21 - 18 6 124 -11C	3 225 209 4 22• -1 5 101 95	12 87 -79	16 75 -7C	5 51 -47 6 44 53 7 23• -5
9 142 184 10 44 45 11 2C• 21	5 244 250 6 160 15	12 37	-37	8 176 176 9 165 155 0 69 - 60	9 25 28 10 64 67	4 139 -130 5 191 195 6 241 239	R 2C• -18 9 96 96	P.K.4	C.K.5	-6.K,S	C 212 212 1 11C 105	-7.K.7
8,*,0	8 283 282 9 122 -12	1 553	-77C	2 30 -25	12 20 7	8 44 -43	11 187 176 12 52 -30		2 159 154	2 162 154	3 43 3e	2 113 -45
0 191 190 1 244 -252 2 151 145	11 20• -0 12 83 8	3 34	-113	6,K,Z 0 391 401	-7,K,2		-8,K,3 0 426 438	-1,K,4	4 213 213 5 238 -238 6 71 72	5 146 150 6 232 223 7 21• 8	6 147 151 7 61 -46 8 167 161	5 1 34 1 14
3 142 -152 4 184 188 5 86 87	7.K.1	6 18 7 364 8 22	367	1 31 30 2 235 233 3 18• -10	2 133 -144 3 289 292 4 19 -28	6.K.3 C 66 69	2 209 203	1 2C -24 2 52 61 3 456 526	7 21 - 16 8 140 136 5 124 123	8 245 233 9 130 -120 10 124 123	\$ 151 133 10 \$4 86	-8,*,7 C 199 181
6 214 231 7 19• 23 8 68 69	1 42 -4 2 285 29 3 329 33	9 194 10 29 11 45	-34	4 21 -1 5 22 21 6 199 198	5 245 242 6 106 -107 7 100 95	1 56 61 2 124 126 3 131 131	5 4C -34 6 229 231	4 19• -7 5 355 414 6 26 -30	10 15H 162 11 22• -1H 12 112 104	11 22+ 2 -7,K,5	-5,*,6	1 83 69 2 129 113 3 32 28
9 106 -98 10 50 4P 11 79 68	5 232 23 6 48 -4	13 182	159	8 217 218 9 54 59	9 172 171	5 125 - 129 6 171 - 166	A 187 194 9 35 10	8 5C 54	1.4K.5	1 196 187	3 185 -144 3 185 -188 4 104 -98	-2,6,8
9,K,O	8 64 5 9 161 15 10 28 -10	0 126	-135	1 56 -45	12 35 -55	8 62 76 9 113 10 10 132 124	11 56 -46 -9.K.3	11 175 175 12 121 -1C4	2 2 C 9 - 213 3 28 - 21 4 59 - 54	4 49 -54 5 199 171 6 129 -126	6 /1 64 7 61 61	C 162 147
2 225 221		2 138	131	7.K.Z	-H,K,2 0 318 321	11 2213	1 1532	14 22. 4	5 99 92 6 52 60 7 360 354	7 159 159 8 42 47 9 106 94	10 54 -41	-3,K,8
5 187 -182 6 111 -109 7 20 - 18	8+K+1 0 375 38	6 20C	201	2 227 -228 3 218 216 4 32 -22	1 119 -121 2 174 -170 3 238 -241	1 281 282	3 315 316 5 148 203	C 519 -538	9 231 214 10 36 -40	10 92 BC	-6,×,6	2 134 1(9 -4.K.P
9 67 68 10 44 82	2 121 12	9 61 10 229	215	227 228 6 66 65 7 110 110	5 82 79 6 110 106	5 200	7 33 -26 8 21 0	3 131 -127 4 36 42 5 331 320	12 78 65	0 182 -167	2 142 141	C 106 -71
10,K,0 C 242 236	5 54 5 6 198 190 7 48 -1	12 157	.13î	9 152 141 0 35 -33 1 104 100	9 102 -98	7 171 164 8 48 -41 9 108 109	10 76 61 -1C.K.3	6 324 33C 7 82 83 8 49 54	C 20. 2	3 37 336 331 5 42	5 21 -12 6 6C 76	-5.K.e
1 50 -4e 2 97 9e	9 21 -1	1 220	226				0 335 330	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 187 185	1 5 1 27 146	1 8 23. 213	1 73 71

those for the hydrogen atoms from the magnesium salt (Montgomery & Lingafelter, 1964b). Scattering factors for the vanadium ion were taken from *International Tables for X-ray Crystallography* (1962); for the ferrous ion from Thomas & Umeda (1957); for cobalt and sulfur from Viervoll & Øgrim (1949); for oxygen and nitrogen from Berghuis, Haanappel, Potters, Loopstra, MacGillavry & Veenendaal (1955) and for hydrogen from Table II of Stewart, Davidson & Simpson (1965). Dispersion corrections were made for vanadium $(\Delta f' = 0.2, \Delta f'' = 2.3)$ and for iron $(\Delta f' = -2.67, \Delta f'' = 0)$.

The refinement of all three structures was carried out by full-matrix least squares, first in isotropic and then in anisotropic mode, where the anisotropic temperature factor was of the form

$$\exp\left[-\left\{\beta_{11}h^2 + \beta_{22}k^2 + \beta_{33}l^2 + 2\beta_{12}hk + 2\beta_{13}hl + 2\beta_{23}kl\right\}\right]$$

The calculations were carried out on an IBM 7094 computer, with programs adapted or developed at the University of Washington (Stewart, 1964). The function minimized was $\sum w(F_o - F_c)^2$, with a modified Hughes weighting scheme for the vanadium and iron compounds and all w = 1 for the cobalt compound. In each cycle, unobserved reflections for which $F_c < F_o$ were given zero weight. The hydrogen atom positions were not refined in the vanadium and iron compounds and an average temperature factor (B=2.5) was used for the hydrogen atoms in all calculations. (Because of the close agreement between cell dimensions and heavy atom fractional coordinates of the vanadium, iron, and magnesium salts, it is felt that the refined hydrogen coordinates from the magnesium salt are as valid as recalculated assumed positions for the other salts. All distances and angles involving hydrogen atoms appear to be reasonable.) Hydrogen atom positions and isotropic temperature factors were refined for the cobalt compound.

During the final cycles of refinement the average parameter shifts were 0.02σ for the vanadium, 0.01σ for the iron, and 0.1σ for the cobalt compound and the maximum shifts were 0.07σ for the vanadium, 0.02σ for the iron, and 0.7σ for the cobalt compound. The final values of the *R* index were 0.080 for the vanadium, 0.059 for the iron and 0.050 for the cobalt compound. $(R = \Sigma ||F_o| - |F_c||/\Sigma |F_o|$, omitting unobserved reflections, and those suspected of having large secondary extinction effects.)

The final values of the parameters are listed in Table 1, the observed and calculated structure factors in Tables 2, 3 and 4, bond lengths and angles in Table 5, and hydrogen-bond distances in Table 6.

Table 5. I	Bond i	lengths ((Å)) and	angles ((°))
------------	--------	-----------	-----	-------	----------	-----	---

	V	Fe	Со
M-O(7)	2.16(1)	2.156 (7)	2.107 (3)
M-O(8)	2.16(1)	2.136 (7)	2.106 (4)
M-O(9)	2.12(1)	2.086(7)	2.070 (4)
S—O(3)	1.49 (1)	1.487 (8)	1.472 (4)
SO(4)	1.46 (1)	1.454 (8)	1.448 (4)
SO(5)	1.51 (1)	1.483 (8)	1.475 (3)
SO(6)	1.46 (1)	1.480 (8)	1.468 (4)
D(7)-M-O(8)	89.5 (3)	89.3 (2)	88.9 (1)
O(7) - M - O(9)	92·0 (3)	90.9 (2)	91.5 (1)
O(8) - M - O(9)	90·6 (3)	91·2 (2)	89·4 (1)
O(3) - S - O(4)	109.6 (4)	109.9 (4)	109.8 (3)
O(3) - S - O(5)	108.3 (4)	107.9 (4)	108.2 (2)
O(3) - S - O(6)	109.1 (4)	109.7 (4)	109.9 (2)
O(4) - S - O(5)	109.7 (4)	109.3 (4)	108.8 (2)
O(4) - S - O(6)	111.2 (4)	110.7 (4)	110.6 (2)
O(5)-S-O(6)	108.9 (4)	109.3 (4)	109.5 (2)

Discussion

The metal-oxygen distances show the same pattern as in the other Tutton's salts (with the exception of copper): two longer equatorial bonds and a slightly shorter axial bond.

The pattern for the iron compound is essentially identical with that (2.14, 2.14, 2.07 Å) observed in FeSO₄.7H₂O by Baur (1964) for one iron atom, Fe(1), which has the same environment, namely six water molecules, each bonded by two hydrogen bonds to oxygen atoms of surrounding sulfate ions.

Thus there is no evidence of any special tendency for the FeO₆ octahedron in the hexa-aquoferrous ion to distort. This is contrary to the distortion reported for the FeF₆ octahedron reported in FeF₂ (Baur, 1957; Stout & Shulman, 1960) and predicted for the hexaaquoferrous ion by Hatfield & Piper (1964).

Table 6. Hydrogen bond distances

	•	0		
Bond	Relative position of second atom*	v	Bond distance (Fe	Å) Co
O(7) - O(5)	x, y, z	2.75(2)	2.78(2)	2.793 (6
O(7) - O(6)	x, y, z-1	2.86(2)	2.83(2)	2.831 (6
O(8)-O(4)	x-1, y, z-1	2.74 (2)	2.73 (2)	2.714 (6
O(8)-O(6)	$x-\frac{1}{2}, \frac{1}{2}-y, z-1$	2.86 (2)	2.76 (2)	2.769 (6
O(9)-O(3)	$\frac{1}{2} - x, y - \frac{1}{2}, 1 - z$	2.73 (2)	2.72 (2)	2·707 (e
O(9)-O(5)	-x, -y, 1-z	2.78 (2)	2.76 (2)	2·764 (6
N-O(3)	x, y, z	3.00 (3)	2.99 (2)	2·974 (7
N-O(3)	$x - \frac{1}{2}, \frac{1}{2} - y, z$	3.03 (3)	3.02 (2)	2·995 (7
N-O(4)	$x - \frac{1}{2}, \frac{1}{2} - y, z$	3.15 (3)	3.12 (2)	3.155 (7
N-O(5)	$\frac{1}{2} - x, \frac{1}{2} + y, 1 - z$	2.90 (3)	2.86 (2)	2.842 (7
N-O(6)	$x - \frac{1}{2}, \frac{1}{2} - y, z - 1$	2.93 (3)	2.92 (2)	2.910 (7

* This is the transformation relating each 'second atom' to the corresponding atom in the original asymmetric unit.

The general packing of the ions and the hydrogenbond network is essentially identical with that found in the other Tutton's salts, that is, each water molecule forms two hydrogen bonds (Table 6) which range in length from 2.71 to 2.86 Å. The ammonium ion is also hydrogen-bonded to the oxygen atoms of the sulfate groups, but one bond (to O(3) and O(4) of the same sulfate ion) is 'bifurcated'. In addition, there is a fairly close approach of the water octahedra along the *c* axis, the O(9)–O(9') distance being 3.00 Å for the vanadium, 3.03 Å for the iron, and 3.02 Å for the cobalt compound.

This research was supported in part by the U.S. Public Health Service under Research Grant GM-10842, in part by the U.S. National Science Foundation, and in part by Defense Research Board of Canada Grant 9510-31.

References

BAUR, W. H. (1964). Acta Cryst. 17, 1167. BAUR, W. H. (1957). Naturwissenschaften, 44, 349.

- BERGHUIS, J., HAANAPPEL, IJ. M., POTTERS, J., LOOPSTRA, B. O., MACGILLAVRY, C. H. & VEENENDAAL, A. L. (1955). *Acta Cryst.* 8, 478.
- FURNAS, T. C. (1957). Single Crystal Orienter Instruction Manual. Milwaukee: General Electric Company.
- HATFIELD, W. E. & PIPER, T. S. (1964). Inorg. Chem. 3, 1295.
- JAMES, R. W. (1948). The Optical Principles of the Diffraction of X-rays. Appendix III. London: Bell.
- KRANZ, M. (1963). Inorg. Synth. 7, 94.
- MCWEENY, R. (1951). Acta Cryst. 4, 513.
- MONTGOMERY, H., CHASTAIN, R. V. & LINGAFELTER, E. C. (1966). Acta Cryst. 20, 728, 731.
- MONTGOMERY, H. & LINGAFELTER, E. C. (1954a). Acta Cryst. 17, 1295.
- MONTGOMERY, H. & LINGAFELTER, E. C. (1964b). Acta Cryst. 17, 1478.
- STEWART, J. M. (1964). Crystal Structure Calculations System X-ray-63. Univ. of Maryland TR-64-6.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175.
- STOUT, J. W. & SHULMAN, R. G. (1960). Phys. Rev. 118, 1136.
- THOMAS, L. H. & UMEDA, K. (1957). J. Chem. Phys. 26, 293. VIERVOLL, H. & ØGRIM, O. (1949). Acta Cryst. 2, 277.

Acta Cryst. (1967). 22, 780

The Crystal Structure of Bis-(N-isopropyl-3-ethylsalicylaldiminato)nickel

BY R. L. BRAUN AND E. C. LINGAFELTER

Department of Chemistry, University of Washington, Seattle, Washington 98105, U.S.A.

(Received 1 July 1966)

The crystal structure of bis-(*N*-isopropyl-3-ethylsalicylaldiminato)nickel, Ni($C_{12}H_{16}NO$)₂, has been determined from three-dimensional data collected on a single-crystal diffractometer with Cu K α radiation. The cell has dimensions a = 26.947, b = 19.883, and c = 8.820 Å, belongs to space group *Pbca*, and contains eight molecules. The structure consists of discrete molecules in which nickel(II) exhibits a distorted-tetrahedral coordination configuration. The dihedral angle between the plane defined by the Ni–N(1)–O(1) group and the plane defined by the Ni–N(2)–O(2) group is 85.3°.

Introduction

A striking example of the small energy difference between the diamagnetic and paramagnetic states of the nickel(II) ion has been provided by a series of ringsubstituted salicylaldimine chelates of nickel(II). That is, Holm & Swaminathan (1963) have reported that for 3-substituted bis-(*N*-isopropylsalisylaldiminato)nickel chelates the magnetic moments are 3.28, 0, and 3.30Bohr magnetons for the substituents hydrogen, methyl, and ethyl, respectively. Consistent with these magnetic moments, the coordination configuration of the 3hydrogen chelate has indeed been shown to be tetrahedral (Fox, Oriolo, Lingafelter & Sacconi, 1964) and the coordination configuration of the 3-methyl chelate has been shown to be strictly planar (Braun & Lingafelter, 1966). We have now completed the structural determination of the 3-ethyl chelate by three dimensional X-ray diffraction techniques.

Experimental

Bis-(*N*-isopropyl-3-ethylsalicylaldiminato)nickel was prepared by the method of Sacconi, Paoletti & Del Re (1957), using 3-ethylsalicylaldehyde which was prepared according to the general procedure of the Duff (1941) reaction. Final purification was accomplished by two recrystallizations from equal volumes of methanol and 2-butanol by slow evaporation at room temperature. The crystals were in the form of flat needles, lath-like on (100) and elongated along [001]. A crystal of dimensions $0.14 \times 0.12 \times 0.03$ mm was used